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of Liver Fibrosis in Mice Using a Deep Learning
Algorithm
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Abstract
In preclinical studies that involve animal models for hepatic fibrosis, accurate quantification of the fibrosis is of utmost importance.
The use of digital image analysis based on deep learning artificial intelligence (AI) algorithms can facilitate accurate evaluation of liver
fibrosis in these models. In the present study, we compared the quantitative evaluation of collagen proportionate area in the carbon
tetrachloride model of liver fibrosis in the mouse by a newly developed AI algorithm to the semiquantitative assessment of liver
fibrosis performed by a board-certified toxicologic pathologist. We found an excellent correlation between the 2 methods of
assessment, most evident in the higher magnification (�40) as compared to the lower magnification (�10). These findings
strengthen the confidence of using digital tools in the toxicologic pathology field as an adjunct to an expert toxicologic pathologist.
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Liver fibrosis is a prevalent pathological finding in chronic

liver disorders and is characterized by the increased accumula-

tion of extracellular matrix (ECM) proteins (primarily

composed of collagen I and III) in the liver.1-4 Collagen pro-

duction is initiated by hepatic stellate cells as a wound healing

response to chronic liver injury, such as alcohol toxicity and

viral infection.5,6 If the injury is not resolved, ECM continues

to accumulate, resulting in liver fibrosis, causing disruption

of the normal architecture of the liver and impairment of

hepatic function.3 Although most mild cases of liver fibrosis

are asymptomatic, in some cases, this process can lead to liver

cirrhosis, which in turn can cause complications, such as var-

iceal bleeding, portal hypertension, and hepatocellular carci-

noma.3,7 Advanced liver fibrosis is an incurable condition,

which can only be resolved with liver transplantation.2

Cirrhotic liver disease is the most prevalent cause for liver

transplantation.8 However, if detected and treated early, this

process can be reversed.9

Accurate quantification of liver fibrosis is essential for

evaluating the degree of progression to liver cirrhosis, asses-

sing the efficacy of novel therapies and establishing the neces-

sary treatment.9-18 Liver biopsy still remains the gold standard

for evaluating liver fibrosis both in research and clinical

practice.19-21 Conventionally, a semiquantitative histological

evaluation has been regarded as the method of choice for liver

fibrosis assessment.22-24 However, in the last 2 decades, auto-

mated techniques based on digital image analysis (DIA) of

liver biopsy specimens have been developed for fibrosis quan-

tification. These techniques calculate the ratio of the areas of

fibrosis relative to the entire liver tissue area examined (col-

lagen proportionate area [CPA]).19,25-29 These methods have

been found to be very reliable, precise, reproducible, sensitive,

and in strong correlation with liver function, stiffness, and

portal hypertension.19,25-32

Although DIA of liver fibrosis has been in use in clinical

practice for many years, its use in animal models has been

reported only sparsely in the past.33-37 Taking into consider-

ation the importance of animal models of liver disease for

research and translational purposes38 and the growing role of

digital pathology and image analysis in toxicologic pathol-

ogy,39 additional information on the reliability, accuracy, and

usability of such methods is essential. To further expand the
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applicability of DIA in preclinical models for liver fibrosis, we

used data from a study that evaluated liver fibrosis in mice

using the carbon tetrachloride (CCl4) model,40,41 and we com-

pared the traditional semiquantitative evaluation by an experi-

enced toxicologic pathologist with a novel artificial

intelligence (AI) application for identification and quantifica-

tion of liver fibrosis.42 Furthermore, this analysis was done by

deploying the application into the pathologist’s microscope,

therefore facilitating its use, without disrupting the regular

reporting workflow.42-44

Nine-week-old female BALB/c mice were used in this

study. The animals were maintained in the animal facility of

the Molecular Biotechnology Center of the University of Tor-

ino under a 12-hour light-dark cycle with ad libitum access to

food and water. Experimental procedures adopted in the study

were in conformity with Italian and European Union animal

welfare guidelines and laws and were authorized by the Italian

Ministry of Health (Authorization No. 308/2020-PR).

The mice received multiple subcutaneous injections in the

inguinal area with 100 mL CCl4 in olive oil, twice a week for 8

consecutive weeks (group 2). Carbon tetrachloride dose was

escalated from 5% (week 1) to 10% (weeks 2-8). Additional 6

female BALB/c mice did not receive CCl4 and served as

healthy controls (group 1).

At the end of the 8-week treatment period, mice from both

groups were killed. Nine additional female BALB/c mice

received CCl4 for 8 weeks, and then received weekly

phosphate-buffered saline injections for 4 weeks (group 3).

These mice were killed after 12 weeks, and liver tissue was

collected from all 3 groups. After embedding in paraffin, serial

sections (3-5 mm thick) were cut and stained with picrosirius

red (PSR) for collagen determination. For the DIA, the sections

were evaluated using 2 magnifications—�10 and �40. In the

�40 magnification, 5 different microscopic fields encompass-

ing the centrilobular regions were selected randomly in each

liver section. In the�10 magnification, 5 different microscopic

fields were selected randomly by the pathologist in each indi-

vidual liver section. A new microscopic field was selected for

each of the 5 evaluations by moving the microscope stage from

the left to the right margin and then to the lower margin. Since

the selected fields were relatively larger than the �40 magni-

fication, the measured regions included both centrilobular and

perilobular regions (ie, panlobular measurements). To assess

the quality of the positive/negative detection by the algorithm,

the obtained images were saved immediately before algorithm

application and immediately thereafter. The 2 resulting files

were visually compared with great accuracy by switching

between the 2 windows of those images. The algorithm was

installed on the Augmentiqs system. This enabled the pathol-

ogist to work faster by accessing the algorithm directly through

the microscope.

For the semiquantitative evaluation, the histopathological

changes were scored manually using a semiquantitative grad-

ing consisting of 7 grades (0-6, “ISHAK score”),23 with mod-

ification, as follows: 0 ¼ no fibrosis; 1 ¼ fibrous expansion of

some centrilobular and/or periportal areas, with or without

short fibrous septa; 2¼ fibrous expansion of most centrilobular

and/or periportal areas, with or without short fibrous septa; 3¼
fibrous expansion of most centrilobular and/or periportal areas

with an occasional portal to portal (P-P) bridging; 4 ¼ fibrous

expansion of portal areas with marked bridging (P-P) as well as

portal-central (P-C); 5 ¼ marked bridging (P-P and/or P-C)

with occasional nodules (incomplete cirrhosis); and 6 ¼ cir-

rhosis, probable or definite. After performing the manual eva-

luation, the AI algorithm for quantitative assessment was

applied.

Data Set Preparation

The entire data set consisted of 140 field-of-view images of

size 3008 by 4112 pixels including microscopic fields ran-

domly sampled by pathologist at 10� and 40� magnifications.

These microscopic field images were acquired using an Olym-

pus BX51 microscope that had been supplemented with a digi-

tal pathology imaging and display system (Augmentiqs).43,44

Of these 140 fields, 80 fields were acquired by randomly

selecting microscopic fields from treated group animals while

the remaining 60 fields belonged to the control group. The data

set was divided into 3 sets—training, validation, and test con-

taining 50 (30 treated þ 20 control), 20 (10 treated þ 10 con-

trol), and 70 (40 treated þ 30 control) microscopic field

images, respectively. The same division of data set was done

for both 10� and 40� magnifications. Figure 1 shows the

division of data set at 10� and 40� magnifications.

An expert pathologist annotated the entire data set for col-

lagen identification. Since it is computationally and memory

wise expensive to run deep learning (DL) model on the entire

filed image of size 3008 by 4112 pixels, each field image from

all 3 sets was divided into tiles of 1024 by 1024 pixels. The

division was done in such a way that each tile had 25% overlap

with neighboring tiles. Additionally, adequate number of rows

and/or columns was padded for boundary tiles. To achieve

Figure 1. Division of data set.
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better generalization, the training set was augmented using

random affine transformations and color variations on each

training tile.

Convolution Neural Network Architecture

The basic architecture was an encoder–decoder network similar

to U-Net45 as seen in Figure 2. The encoder network incorpo-

rated inception-like modules,46 which provided the capability to

aggregate context to extract complex features for identifying

tissue cell morphology as the feature maps were down-

sampled. The network allowed better propagation of information

from lower resolution layers of the decoder to higher resolution

layers, using a dense shortcut connection at each decoder stage.

This concatenated information from the previous stage at lower

resolutions with the output of the current stage convolutions.

Additionally, both encoder and decoder blocks use proposed

parallel convolutions to further enhance context aggregation.

The proposed architecture achieved better segmentation perfor-

mance than most state-of-the-art semantic segmentation models

while using a significantly lower number of parameters.

Algorithm Training

The above model was implemented in Keras with Tensorflow

back end and was trained to perform a segmentation task on

1024 by 1024 tiles, as mentioned earlier, until the train-val loss

curves flattened. Two different models were trained for 10�
and 40�magnifications. The following configuration was used

while training:

� Loss function: Focal Tversky loss function47 was used

which has proven to perform better than standard cross

entropy loss for segmentation tasks when the data are

imbalanced, that is, data from 1 class are present in a

much more amount than the other.

� Batch size: The model was trained in a batch of 8 tiles.

� Optimizer and learning rate scheme: An Adam optimi-

zer was used with an initial learning rate of 1e-3, and a

stepwise reduction in learning rate was performed after

every 50 epochs.

Each tile was preprocessed by mean subtraction, and divi-

sion by standard deviation was calculated for each RGB (Red,

Green, Blue) channel separately. This typically helps convolu-

tion neural network (CNN) learn faster, as all the data appear to

come from the same distribution.

Along with CNN, color thresholding in HSV (hue, satura-

tion, value) color space was used as a helper output. Each

training set image was normalized between 0 and 1, and thresh-

old values were obtained for H, S, and V color channels, such

that over 90% of the collagen regions were segmented. These

values were used during testing.

Algorithm Testing

Similar to training data, 70 microscopic field images were

divided into tiles of 1024 by 1024 pixels and same preproces-

sing steps were applied. However, these were divided without

any overlapping with neighboring tiles. The generated tile-wise

results were stitched in proper order to get segmentation output

of entire microscopic field image. In addition, the entire micro-

scopic field images were color thresholded in HSV color space

as stated in the Algorithm Training section. A combined output

for each microscopic field image was generated by logical OR

operation on DL output and HSV color threshold output, fol-

lowed by morphological closing with disk structuring element

of radius 15. After comparing algorithm results with the ground

truth for all 70 microscopic field images from the test set,

intersection over union and F1 score were found to be 0.8011

and 0.8775, respectively.

The evaluating pathologist used an Olympus BX51 micro-

scope that had been supplemented with a digital pathology

imaging and display system.43,44 The AI quantification tool

was deployed in real time, and the results were viewed on the

display system.

Prior to application of the appropriate statistical method,

Shapiro-Wilk normality test was performed. If the normality

test did not pass for all groups, Kruskal-Wallis test with Mann-

Figure 2. Convolution neural network architecture used for segmentation task.
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Whitney U test was used. If the normality test passed for all

groups, Levene test for equality of variances was performed. If

Levene test passed, 1-way analysis of variance (ANOVA) test

with Tukey post hoc analysis was performed.

In order to determine whether there is a significant differ-

ence in the level of fibrosis between the groups, Kruskal-Wallis

test with Mann-Whitney U test was used on the pathologist’s

assessment and the AI algorithm quantitative evaluation with

the higher magnification. One-way ANOVA test with Tukey

post hoc analysis was performed on the AI algorithm quantita-

tive evaluation with the lower magnification. In all cases, a P

value of less than .05 was considered statistically significant. In

addition, the association between the level of fibrosis assessed

by the pathologist and the level of fibrosis assessed by each of

the AI algorithm quantitative evaluation was calculated by the

Spearman correlation coefficient. According to the semiquan-

titative assessment, there was no fibrosis in any of the vehicle-

treated groups (Table 1 and Figure 3A and G). Administration

of CCl4 resulted in liver fibrosis in all the treated animals after

8 weeks (group 2), and liver fibrosis in all examined sections

received a score of 4 (Table 1 and Figure 3C and I). After 4

weeks of follow-up (group 3), a slight reduction in fibrosis was

seen, and the mean fibrosis score was 2.67 according to the

semiquantitative assessment (Table 1 and Figure 3E and K).

There was no difference between the different magnifications

(�10 vs �40) in the semiquantitative scoring.

Using the DIA, a higher CPA was noted after CCl4 treat-

ment, when compared to vehicle control, similar to the semi-

quantitative assessment (Table 1 and Figure 3B, D, F, H, J, L).

Of note, in the �10 magnification, there was no difference

between group 2 and group 3 in the CPA, while a slightly lower

CPA was seen in group 3 in the�40 magnification, resembling

the findings from the semiquantitative assessment (Table 1).

There was a statistically significant difference (P < .01) in

the level of fibrosis of the different groups in each of the

evaluation methods. However, only the pathologist’s assess-

ment and the AI algorithm with the higher magnification were

able to significantly statistically differentiate between the level

of fibrosis in group 2 and group 3 (P < .01).

There was also a positive strong correlation (rs¼ 0.939, P <

.001) between the level of fibrosis assessed by the pathologist

and the level of fibrosis that was found by the AI algorithm

with the higher magnification. A positive but weaker correla-

tion (rs ¼ 0.562, P < .01) was found between the level of

fibrosis assessed by the pathologist and the level of fibrosis

that was found by the AI algorithm with the lower

magnification.

In recent years, DIA is increasingly being applied for eva-

luation in toxicologic pathology.39,48 Artificial intelligence

techniques are now being used for automated quantification

of tissue and disease processes.49-51 In the current study, we

used an area-based measurement approach,52,53 where the sur-

face area of PSR staining was quantified to assess the amount

of collagen present in the tissue. To reliably detect and quantify

the fibrotic tissue in the current study, a DL-AI algorithm was T
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Figure 3. Quantitative assessment of liver fibrosis using image analysis. A, Liver section from a control mouse (group 1), picrosirius red staining,
�10 magnification. Semiquantitative assessment scoring of 0 (ISHAK score with modification). B, Same microscopic field as (A), with applied DIA
as seen on the display system; CPA ¼ 3.54%. C, Liver section from a mouse from group 2 (killed after 8 weeks), picrosirius red staining, �10
magnification. Semiquantitative assessment scoring of 4 (ISHAK score with modification). D, Same microscopic field as (C), with applied DIA as
seen on the display system; CPA ¼ 5.91%. E, Liver section from a mouse from group 3 (killed after 12 weeks), picrosirius red staining, �10
magnification. Semiquantitative assessment scoring of 3 (ISHAK score with modification). F, Same microscopic field as (E), with applied DIA as
seen on the display system; CPA ¼ 4.78%. G, Liver section from a control mouse (group 1), picrosirius red staining, �40 magnification.
Semiquantitative assessment scoring of 0 (ISHAK score with modification). H, Same microscopic field as (G), with applied DIA as seen on the
display system; CPA ¼ 1.73%. I, Liver section from a mouse from group 2 (killed after 8 weeks), picrosirius red staining, �40 magnification.
Semiquantitative assessment scoring of 4 (ISHAK score with modification). J, Same microscopic field as (I), with applied DIA as seen on the display
system; CPA ¼ 13.22%. K, Liver section from a mouse from group 3 (sacrificed after 12 weeks), picrosirius red staining, � 40 magnification.
Semiquantitative assessment scoring of 3 (ISHAK score with modification). L, Same microscopic field as (K), with applied DIA as seen on the
display system; CPA ¼ 13.62%. CPA indicates collagen proportionate area; DIA, digital image analysis.
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developed for evaluation at the different magnifications that

were used in the current study (�10 and �40 magnifications).

A better correlation was observed between the semiquanti-

tative evaluation performed by the pathologist and the DIA

when applied on the �40 magnification compared to the �10

magnification. This difference probably stems from the fact

that the fibrotic process is most pronounced and initiates in the

centrilobular regions. Since the microscopic fields in the �40

magnification were focused on these regions, a better

correlation was evident. In contrast, in the �10 magnification,

panlobular measurements were performed and therefore a

larger area of nonfibrotic tissue was evaluated using the DIA,

leading to a lesser accurate measurement. This exemplifies the

importance of carefully choosing the right magnifications

when using DIA for fibrosis quantification. The weaker corre-

lation at lower magnification is likely related to lower accuracy

of pathologist scoring and subjectivity inherent to scoring

fibrosis across large areas (supralobular) with confounding

Figure 3. (Continued).
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influence of normal portal fibrous tissue, a factor that the algo-

rithm is precisely designed and trained to overcome. At higher

magnification, the subsampling of pathology fields within cen-

trilobular regions eliminated this confounding influence, yield-

ing a greater correlation. In addition, in the current study, 5

microscopic fields were chosen for each slide. Using additional

number of fields for fibrosis assessment in each slide may

possibly enhance the performance of this evaluation method.

In addition, the algorithm produces objective, reproducible,

and faster results. As compared to simple thresholding, CNN

achieves more generalization in terms of stain and light varia-

tions. Using threshold-based methods, one could adapt/update

the threshold(s) even with a slight variation of stain, which

CNN can handle if trained with sufficient data augmentation

to incorporate stain variations.

In the current study, we have observed regression of fibrosis

4 weeks after cessation of the liver injury (CCl4 administra-

tion). This decrease in fibrotic tissue was evident both in the

semiquantitative and quantitative (�40 magnification) mea-

surements. While in humans, spontaneous regression of fibro-

sis is still a matter of research, it has been demonstrated to

occur in small animal models.54-57 This process probably

involves the degradation of the excessive deposited ECM,

deactivation of the myofibroblasts, and a shift from a proin-

flammatory environment to a restorative milieu.

Digital image analysis and the use of automated algorithms

can effectively assist toxicologic pathologist, and the patholo-

gist has an important role in assessing and validating the per-

formance of such algorithms.48,49,58,59 Therefore, reports on

correlation studies between semiquantitative evaluations by a

board-certified toxicologic pathologist and the quantitative

evaluation performed using DIA tools are of utmost impor-

tance. We have previously published a report on the use of a

DL algorithm for quantification of fatty vacuoles in a fatty liver

mouse model.42 We found an excellent correlation between the

manual semiquantitative evaluation and the quantitative eva-

luation of hepatic fatty vacuoles by the DIA. We believe that

these reports and additional ones in the future can be of great

benefit to ensure applicability of such novel tools in routine

laboratory workflows.
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